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Properties of fluids can vary significantly over a cross-section of a channel. The variations can be
graphically presented by means of profiles which are typically based on a limited number of measured
points. The article presents suitability of the kriging interpolation method for data analysis at measuring
properties of fluids in large channels in various thermal and process plants. Using a practical example
rather than complex statistical analyses the advantages of the kriging over other interpolation methods
are presented. Several examples also give some guidelines on choosing number and distribution of
measuring points to ensure accurate profiles.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Measurement of the parameters of gases or liquids in power
plants is important for monitoring the operation of the entire plant,
both from the viewpoint of energy efficiency and reliability of
operation, and regarding its influence on the environment. In
channels and pipes of larger dimensions, the values of a certain
parameter may be quite non-uniform over the channel’s cross-
section. Regardless of whether only the average value of the
parameter is important or the parameter’s variation over the cross-
section is investigated, in such cases the value of the parameter
needs to be measured in a bigger number of points [1,2]. Because of
the way measurements are performed, the number of measure-
ment points is limited, therefore even grid measurements cannot
provide data on the value of the measured parameter at any
particular point of the channel’s cross-section. However, on the
basis of the measured values, it is certainly possible to estimate the
value of the chosen parameter in places where measurement was
not done. Several interpolation methods have been developed for
this purpose. While linear interpolation is the least complex
interpolation method it does require appropriate tessellation of the
area where calculations are to be performed. For planar cases
Delaunay triangulation is commonly used [3,4]. Polynomial
regression can also be used to find values of the chosen parameter
bnič).
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where measurement was not or could not be performed [5]. In the
field of geostatistics, the kriging method is often used, in which the
unknown value of a parameter is calculated as the weighted
average of known, measured values [6–9]. In this manner it is
possible to determine the value of a studied parameter at any
chosen number of points within a certain channel cross-section. By
calculating parameter values in a sufficiently large number of
points over the entire cross-section, the so-called profile of
parameter variation across the entire cross-section is also obtained.
All the mentioned methods have advantages and disadvantages
regarding the particular case where they are applied. Linear inter-
polation and kriging retain values of the observed parameter in the
points where the values are measured and they can be assumed to
be correct. Polynomial regression on the other hand causes some
’smoothing’ of the profile depending on the polynomial function
used and the actual profile of the parameter. Linear interpolation
and kriging perform best within the region of the available data
while polynomial regression can easily be extrapolated beyond the
region of the measurement points.

This paper briefly presents the procedure for planar interpola-
tion using the kriging method, along with its use on an example of
determination of flue gas properties over channel cross-section
behind a rotational air heater. The conditions within the channel
are estimated by numerical simulation. A combined CFD and
regenerative heat transfer model was used to simulate three-
dimensional velocity, pressure, temperature and gas composition
fields within a rotary air heater and the adjoining flue gas channels
[10,11]. The actual profiles are therefore assumed to be thoroughly
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Nomenclature

d distance
i, j integer counter
K constant
l lag distance
N number of data points
n number of point pairs within lag
P computational point
T data points
w weight
w vector of weights
x,y,z Cartesian coordinates
g general function
f general parameter
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known, and the results obtained using the kriging method can be
compared with them.

2. Observed planar profile

For illustrative presentation of characteristics of determination
of planar parameter profiles using kriging and polynomial regres-
sion method, a case of temperature profile of flue gases in a channel
with sides of 8 m and 3.6 m that is located behind a rotational heat
exchanger was used. The temperature profile was calculated by
means of numerical simulation of the operation of rotational heat
exchanger. Fluid flow simulations are based on solving a system of
transport equations which is done with commercial CFD software.
Additional model was used to simulate regenerative heat transfer
within the matrix of the heat exchanger [10,11]. The simulation
yields the values of flue gas temperature throughout entire three-
dimensional computational domain including the studied plane.
The virtual measuring plane thus consists of almost 4800 points
where the observed parameter is known. Fig. 1 depicts the refer-
ence temperature profile on the measuring plane. This data will be
used for comparison with the values calculated with spatial inter-
polation. Measurements within the channel are substituted with
sampling a certain number of points on the virtual measuring
plane; these represent known points Ti. The temperatures at the
selected points thus represent known values of parameter fi. All
profiles which will be presented in subsequent sections are shown
Fig. 1. Actual profile of the studied parameter – flue gas temperatures behind a rota-
tional heat exchanger.
in a comparable manner and using the same temperature scale as in
Fig. 1.

3. Spatial interpolation using the kriging method

In engineering practice and research, parameter measurements
are often required. The values of such parameters may continuously
vary within a certain space or along a plane. Measurements are
usually performed in discrete points and the number of measure-
ment points is limited by the available equipment and time.
Furthermore, the locations of measurement points usually cannot
be optional, because they are determined by the design of duct and
accessibility of the area in which measurements are done. Even in
places where individual parameter values are not known for any
reason, these can be determined on the basis of known values at
other points. For this purpose, an interpolation method is necessary
that will take into account as many known points as possible and
will therefore include the characteristics of variation of the studied
parameter across the entire measurement range.

In the fifties of the previous century, the South African mining
engineer Danie G. Krige studied a similar problem. On the basis of
a limited number of soil samples, he tried to determine the content
of a certain ore at sites from which he had no available samples.
French mathematician Georges Matheron further developed the
interpolation method proposed by Krige and named it kriging [6,8].
Nowadays, this method is used mostly in geostatistics, but it is also
suitable for the analysis of measurements in various fields of
engineering, for example in power and process plants [2,12,13].

In the case of the kriging method, estimation of the value of any
chosen parameter f¼ f(x,y,z) in a computational point P¼ (x,y,z),
where its value is unknown, is based on the known values fi of the
same parameter in N data points Ti¼ (xi,yi,zi) in the vicinity of point
P. The estimate of the sought value is the weighted average of all
known values [6,8].

f ¼
XN

i¼1

wifi (1)

Factors wi are weights which represent the influence of indi-
vidual data point Ti on the value of parameter f at point P. All
weights together compose the vector of weights w for point P. The
sum of vector components i.e. all weights wi should equal 1 to
guarantee uniform unbiasedness of the estimated values [8], i.e. the
average value of the actual parameter values is the same as the
average value of the estimated parameter values [6].

XN

i¼1

wi ¼ 1 (2)

3.1. Weights for calculation of parameter values in computational
points

The values of weights for individual points are determined on
the basis of the assumption that an unknown value of parameter f

at point P is more likely to be similar to the values at points Ti close
by than in more remote points. The weights of points which lie
closer to the computational point P will therefore be higher, while
those for more remote points will be lower, possibly even negligibly
small [6]. The influence of distance can generally be described using
appropriate function g(di,j) in which di,j represents the distance
between points i and j. The optimal weights are calculated using the
following system of linear equations:
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Besides the weights w1,., wN additional variable w0 was added to
the system to ensure that the system will only have one solution [8].
3.2. Determination of function g(d)

The selection of the function to describe the distance between
individual points g(d) is based on the squared difference of
parameter value f at two different points. Some guidelines for
selecting appropriate function and criteria for their evaluation are
described in [14]. Kriging assumes that in general the difference of
parameter value in two selected points increases with increasing
distance between the two points. If a chart is created with distance
between the points (lag, li) on abscissa and the squared difference
(gi) on ordinate an increasing function as shown in Fig. 2 can be
observed [6].

The discrete points are approximated using the best fitting
function g(d), which is called the model variogram; one of the
following models usually proves appropriate [8]:

- Linear: g(d)¼ K1$dþ K2

- Gaussian: gðdÞ ¼ K1$
�

1� e�dK3
�
þ K2

- Spherical: gðdÞ ¼
(

K1

�
1;5d=dN�0;5

�
d=dN

�3�
þK2 ;d�dN

K1þK2 ;d>dN

)

dN is the limit distance between two points, onward from which
variances gk randomly oscillate around a constant value called the
‘nugget’, Fig. 2

- Power: gðdÞ ¼ K1$dK3 þ K2

The parameters K1, K2 and K3 in the selected model are adjusted
such that the model variogram best fits the calculated points gk.
Fig. 2. Calculated variances and spherical model variogram.
Depending on the actual case different fitting approaches can be
used, e.g. least squares and it’s derivatives are presented in [5].

Once the model variogram has been selected and the parame-
ters K1, K2 and K3 have been determined, the linear system of
equations (3) is solved using the Gaussian elimination method. The
obtained result is the vector of weights w¼ (w1,w2,.,wN) which
are used in (1) for calculation of the value of parameter f at point P.
Fig. 3 shows a schematic presentation of this procedure.
4. Planar parameter profile

Instead of a single point P at which one would like to determine
the value of parameter f, it is sometimes necessary to know the
variation of this parameter over the entire computational range, for
example the measurement plane. The kriging method described
above is used for calculating the value of the parameter in a bigger
number of points Pj, which, for the presentation purposes, usually
lie at the nodes of an orthogonal grid. The variogram and the model
variogram g(d) depend only on the parameter’s value and locations
of the known points and therefore remain unchanged in compu-
tations for all grid points. The vector of weight wj for calculating the
parameter’s value at the computational point Pj, however, depends
on the point’s location and its distance from the known points Ti,
therefore the entire vector needs to be calculated separately for
each point. By using a computer and appropriate numerical
methods for solving systems of linear equations, it is possible to
quite quickly calculate the values of the parameter even for a rela-
tively large number of points.

For the presentation of certain characteristics of determination
of planar parameter profiles using the kriging method, we used the
case of the temperature profile of flue gases in a channel with sides
of 8 m and 3.6 m that is located behind a rotational heat exchanger.
The actual temperature profile consisting of curves of constant
values (Fig. 1) was calculated by means of numerical simulation of
the operation of rotational heat exchanger [10]. This yields the
actual values of temperature at almost 4800 points on the studied
plane and can be used for comparison with any values that are
calculated later.

Channel measurements are substituted with a certain number
of points taken from the profile obtained by numerical simulation;
these represent known points Ti. The temperatures at the selected
Fig. 3. Schematic presentation of the computational procedure according to the
kriging method.



Table 1
Comparison of profile quality for profiles calculated using either kriging or poly-
nomial regression.

Kriging Polynomial
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points thus represent known values of parameter fi. All profiles
which will be presented in the figures below are shown in
a comparable manner and using the same temperature scale as in
Fig. 1.
regression

a) b) c) d)

Percentage of surface area where error
is lower than 0.5 �C

% 26 31 12 10

Average error �C 5.2 3.9 5.6 4.7
4.1. Comparison of kriging and polynomial regression

Instead of the kriging method, other methods can also be used
to illustrate the profile of parameter f on a certain plane. Using
polynomial regression, function f(x,y) can be determined, with
which one can determine the value of the parameter at any point of
the computational plane. Two samples are selected from the profile
shown in Fig. 1, one comprising 32 points and another comprising
60 points, and they are used to estimate the temperature profile.
Fig. 4 presents the profiles obtained using the kriging method
(examples a) and b)) and also using polynomial regression
(examples c) and d)). Variogram from the available data showed
that best model variogram is spherical model with parameters
K1¼240, K2¼ 0 and dN¼ 4, see Section 3.2, which was used for
kriging. In the case of polynomial regression, the variation of
temperature with the point’s position in the channel is expressed
with the following function:

Tðx; yÞ ¼ K1 þ K2xþ K3yþ K4x2 þ K5xyþ K6y2 þ K7x3

þ K8x2yþ K9xy2 þ K10y3 ð4Þ

All profiles in Fig. 4 show white areas, in which the deviation of
the calculated profile from the actual one (Fig. 1) is lower than
0.5 �C. Table 1 contains data on the percentage of the total cross-
section surface area that is covered by the white area in all four
cases as well as average error for particular case. The average error
is average value of absolute differences between actual and esti-
mated value of the observed parameter in all available 4800 points.

Both Fig. 4 and data in Table 1 show obvious difference between
the compared methods. The kriging method makes it possible to
capture the non-uniformity of the temperature profile much better.
Using the kriging method, the percentage of the computational
Fig. 4. Comparison of kriging and polynomial regressi
surface area in which deviations of the studied parameter are
relatively small is significantly higher than when polynomial
regression is used. In addition, the greater the number of points, the
higher is the above-mentioned percentage of the surface area in the
case of the kriging method, while during polynomial regression
even a reduction can be noticed, Table 1. When the kriging method
is used, a higher-quality profile is achieved in the presented case
that comprises 32 points than with polynomial regression that
comprises 32 or even 60 points. However, a higher number of
known (measured) points also results in a proportionally longer
time or amount of equipment necessary to perform the
measurements.

A disadvantage of the kriging method can also be seen in Fig. 4.
Outside the region of the sample points estimates are a lot less
accurate than inside the region. This characteristic of kriging should
be taken into consideration while planning measurements to
appropriately position the measuring points.

Another characteristic of the kriging method which can also be
seen in Fig. 4 is that the values of the parameter at the known
points remain unchanged, which generally does not happen with
regression. Therefore, if one of computational points P matches
a known point Tk, the kriging method yields values f(P)¼ f(Tk)
[8]. All of the known points along the profiles a) and b) therefore
lie within the white area, while in the case of polynomial
regression only a few known points along profiles c) and d) lie
within the shaded area.
on for determination of planar parameter profile.
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4.2. Computational parameters for calculating planar profiles using
the kriging method

The accuracy of the resulting profile of the studied parameter f

is also affected by the way the described method is used for
calculating the planar profile. The temperature profile of flue gases
as shown in Fig. 1 is again taken as the basis. Among all of the
known points, some are selected for the sample, and from this
sample a certain number of computational points are calculated
and used to graphically present the studied profile. The quality of
the calculated profile is significantly affected by:

-The number of known points (sample size), and
-The distribution of known points.

According to [15], in large ducts properties of fluids can only be
obtained by measurement traverse with appropriate number of
measuring points. Each of the measuring points should cover
a rectangular area of less than 0.5 m2, and the ratio of the area sides
should be less than 2. The recommended number of measuring
points thus depends on the size of the measuring plane. The loca-
tions of measuring points should be distributed over a homoge-
neous orthogonal grid with control areas as much as possible
square shaped.

4.2.1. Sample size of known points
In order to be able to make a profile of a certain parameter over

a selected measurement plane, it is necessary to first measure the
values of this parameter at a certain number of known locations on
the studied plane. The number of measurement points is directly
related either to the amount of necessary measuring equipment (if
measurements in all points need to be performed simultaneously)
or with the duration of measurement (if measurement is per-
formed by probing) separately in each point. Furthermore, the
number of measurement points and their positions are also usually
limited by the construction of the channel in which the measure-
ments are performed. Fig. 5 shows the influence of the number of
known (measured) points on the shape of the calculated profile. All
profiles from Fig. 5 can be compared with the actual profile shown
Fig. 5. Influence of the number of measured
in Fig. 1, which is quite non-uniform and shows large gradients of
the studied parameter. Therefore, it is obvious that this can be
described sufficiently well only if a considerable number of
measurement points are used. In the given case, even 60
measurement points are not enough to capture all of the details of
parameter variation as shown in the actual profile. With merely
eight points, it is possible to estimate only the chief trend of
parameter variation, but they certainly do not yield a satisfactory
profile over the entire measurement plane. Such a small number of
measurement points do not suffice for determination of the
parameter’s profile on the studied plane, especially if the condi-
tions are as non-homogenous as in the presented case.

4.2.2. Distribution of measurement points
In cases of asymmetric flow special attention should be put to

the distribution of measuring points [16]. If there is a small number
of known points, deviations from the actual profile along the
channel wall are most obvious, primarily along the upper profile
edge, where temperature gradients are the largest. This area
already lies outside of the scope of known points, therefore in this
place the parameter’s value can be estimated only by extrapolation.
Measurement points can be redistributed closer to the channel
edge, and in the critical part (on the upper edge) a few additional
measurement points can be added as well. Fig. 6a shows that mere
redistribution of measurement points does not assure a more
accurate profile over the entire computational range. More accurate
information about the actual situation and therefore a more accu-
rate profile are obtained along the channel walls, but a different
distribution of known points notably changes the temperature
profile in the central part of the channel.

The addition of eight known points, i.e. 40 in total (Fig. 6b),
better describes the situation along the upper channel edge, while
at the same time it does not cause any significant change of the
profile in the central or lower part of the channel. However, an
unusual shape of the profile along the upper profile edge can be
noticed.

In this part of the channel, the surface areas belonging to indi-
vidual known points have very high aspect ratio (proportion of the
longer to the shorter side of the rectangle), while elsewhere they
points on the interpolated profile shape.



Fig. 6. Improvement of calculated profiles by changing the distribution of known
points or by adding known points.
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are almost quadratic. Therefore, the shape of the control surface
covered by an individual measurement point also affects the shape
of the calculated profile. This influence is shown in Fig. 7, where
profile a) is recalculated using 32 known points, which are arranged
in a different pattern over the cross-section than is seen in Fig. 5b.
The aspect ratio in the case shown in Fig. 5b is 1.1, and in Fig. 7a it is
4.4. The resulting profiles are thus quite different.

Profile b) in Fig. 7 is calculated from only 16 known points. Their
control areas of individual points have aspect ratio of 2.2, therefore
the calculated profile is more similar to the middle profile in Fig. 5b
than profile in Fig. 7a. During measurements, it is therefore
important to make sure that the control surfaces are as quadratic as
possible, to the extent that is permitted by the plant design.
Fig. 7. Influence of aspect ratio on the calculated profile shape.
5. Conclusion

In engineering practice, one often encounters flows of gases or
liquids with properties that vary over a certain cross-section. This
non-homogeneity can best be demonstrated using planar profiles
in which parameter values are graphically presented at all points of
the studied plane. In practice, it is not possible to measure these
values at every point of the cross-section, therefore it is necessary
to estimate the parameter values across the entire cross-section on
the basis of a limited number of known points. This paper presents
the kriging interpolation method, along with an algorithm for
determining the value of the studied parameter at any point of the
cross-section. The applicability of the kriging method in power
engineering is presented on a case of flue gas temperatures behind
a rotational heat exchanger.

A comparison of the kriging method with polynomial regression
is presented. The studied case shows that the temperature profile
calculated using the kriging method matches the actual profile much
better. It also turns out that the kriging method ensures better
results even with a smaller number of known points than poly-
nomial regression with a greater number of known points. An
important advantage of the kriging method is also that the param-
eter values calculated for known points equals their actual values.

Subsequently, the influence of the number and distribution of
known points on the quality of the resulting profile was analyzed
for the kriging method. The number of known points has a signifi-
cant influence on the shape and accuracy of the calculated profile.
Although a greater sample of known points does increase the
number of computational operations necessary for calculating the
profile, it can describe the actual situation in the computational
plane much better.

The number of known points, i.e. the number of measurement
sites on the measurement plane, is usually limited by the plant
design, available equipment and time. Therefore, in addition to the
number of known points, their distribution is also very important.
To be able to accurately present all of the characteristics of the
actual profile, it is necessary to place the measurement points into
those parts of the cross-section in which greater gradients of the
studied parameter are found. The profile shape therefore needs to
be assessed in advance, e.g. on the basis of experience, and
computer simulation of circumstances within the computational
range can also be useful for this purpose.

Concerning the distribution of the known points for the kriging
method, it is also recommended to keep the distances between
individual measurement points as uniform as possible. If the
measurement points are arranged on an orthogonal grid, the
surface area belonging to individual points should be as quadratic
as possible.

In engineering practice, including measurements in the field of
power engineering, the kriging method is a useful tool for the
determination of planar profiles of various parameters. Its main
advantages over other methods are its suitability for use on prac-
tically any set of known values and the fact that with this method
the values of the parameter at known points remain unchanged.
However, it depends on the particular problem how measurements
to determine known points are to be performed and how the
parameters for profile calculation should be selected so that the
profile would present the actual situation on the studied cross-
section as accurately as possible.
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[1] B. Drobnič, J. Oman, Measuring flue gas properties in large channels after air
preheaters, in: Proc. of 15th International Expert Meeting Power Engineering,
Maribor, Slovenia (2006).
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